3.3V / 5V ECL Differential Receiver/Driver With Reduced Output Swing

Description

The MC100EP16F is a differential receiver/driver. The device is functionally equivalent to the EP16 device with higher performance capabilities. With reduced output swings, rise/fall transition times are significantly faster than on the EP16. The EP16F is ideally suited for interfacing with high frequency sources.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single–ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01~\mu F$ capacitor and limit current sourcing or sinking to 0.5~mA. When not used, V_{BB} should be left open.

Features

- 100 ps Typical Rise and Fall Time
- Max Frequency >4 GHz Typical
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: V_{CC} = 3.0 V to 5.5 V with V_{EE} = 0 V
- NECL Mode Operating Range: $V_{CC} = 0V$ with $V_{EE} = -3.0 \text{ V}$ to -5.5 V
- Open Input Default State
- Safety Clamp on Inputs
- Pb-Free Packages are Available

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS*

SOIC-8 D SUFFIX CASE 751

TSSOP-8 DT SUFFIX CASE 948R

DFN8 MN SUFFIX CASE 506AA

A = Assembly Location

L = Wafer Lot

Y = Year

W = Work Week

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

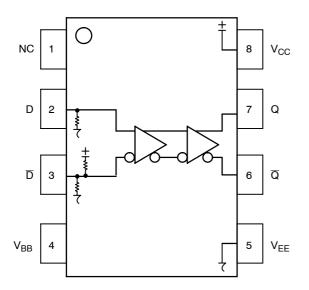


Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Table 1. PIN DESCRIPTION

PIN	FUNCTION			
D*, D **	ECL Data Inputs			
Q, Q	ECL Data Outputs			
V _{BB}	Reference Voltage Output			
V _{CC}	Positive Supply			
V _{EE}	Negative Supply			
NC	No Connect			
EP	Exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply or leave floating open.			

- * Pins will default LOW when left open.
- ** Pins will default to $V_{CC}/2$ when left open.

Table 2. ATTRIBUTES

Charac	Value							
Internal Input Pulldown Resistor	Internal Input Pulldown Resistor							
Internal Input Pullup Resistor		37.5	5 kΩ					
ESD Protection	> 4 kV > 200 V > 2 kV							
Moisture Sensitivity, Indefinite T	ime Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg					
	SOIC-8 TSSOP-8 DFN8	Level 1 Level 1 Level 1	Level 1 Level 3 Level 1					
Flammability Rating	UL 94 V-0	@ 0.125 in						
Transistor Count	10	39						
Meets or exceeds JEDEC Spec	EIA/JESD78 IC Latchup Test		Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test					

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	8 SOIC 8 SOIC	190 130	°C/W °C/W
θЈС	Thermal Resistance (Junction-to-Case)	Standard Board	8 SOIC	41 to 44 ± 5%	°C/W
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	8 TSSOP 8 TSSOP	185 140	°C/W °C/W
θJC	Thermal Resistance (Junction-to-Case)	Standard Board	8 TSSOP	41 to 44 ± 5%	°C/W
θЈА	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W °C/W
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. DC CHARACTERISTICS, PECL $V_{CC} = 3.3 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 2)

				-40°C			25°C			85°C		
Symbol	Characteristic	Ī	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		23	28	40	25	33	45	26	33	45	mA
V _{OH}	Output HIGH Voltage (Note 3)		2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 3)	Î	1525	1690	1775	1525	1690	1775	1525	1690	1775	mV
V _{IH}	Input HIGH Voltage (Single-Ended)		2075		2420	2075		2420	2075		2420	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Note 4)		1355		1675	1355		1675	1355		1675	mV
V _{BB}	Output Voltage Reference		1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5)		2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current	Î			150			150			150	μΑ
I _{IL}		D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 2. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -2.2 V.
- 3. All loading with 50 Ω to V_{CC} 2.0 V.
- 4. Not recommended for Single-Ended operation when using an EP16F to drive another EP16F. V_{OL} has reduced output swing and may not meet the V_{IL} specification over temperature.
- 5. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 5. DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 6)

				-40°C			25°C			85°C		
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		23	28	40	25	35	45	26	33	45	mA
V _{OH}	Output HIGH Voltage (Note 7)		3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V _{OL}	Output LOW Voltage (Note 7)		3225	3390	3475	3225	3390	3475	3225	3390	3475	mV
V _{IH}	Input HIGH Voltage (Single-Ended)		3775		4120	3775		4120	3775		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Note 8)		3055		3375	3055		3375	3055		3375	mV
V_{BB}	Output Voltage Reference		3475	3575	3675	3475	3575	3675	3475	3575	3675	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9)		2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current				150			150			150	μΑ
I _{IL}	ļ '	D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 6. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V.
- 7. All loading with 50 Ω to V_{CC} 2.0 V.
- Not recommended for Single-Ended operation when using an EP16F to drive another EP16F. V_{OL} has reduced output swing and may not meet the V_{II} specification over temperature.
- V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 6. DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$; $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 10)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	23	28	40	25	34	45	26	33	45	mA
V _{OH}	Output HIGH Voltage (Note 11)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 11)	-1775	-1610	-1525	-1775	-1610	-1525	-1775	-1610	-1525	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
V _{IL}	Input LOW Voltage (Single–Ended) (Note 12)	-1810		-1625	-1810		-1625	-1810		-1625	mV
V_{BB}	Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13)	V _{EE}	+2.0	0.0	V _{EE}	+2.0	0.0	V _{EE}	+2.0	0.0	٧
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 7. AC CHARACTERISTICS $V_{CC} = 0 \text{ V}$; $V_{EE} = -3.0 \text{ V}$ to -5.5 V or $V_{CC} = 3.0 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$ (Note 14)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency (See Figure 2. F _{max} /JITTER)		> 4			> 4			> 4		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	170	210	250	180	220	260	200	250	300	ps
t _{SKEW}	Duty Cycle Skew		5.0	20		5.0	20		5.0	20	ps
t _{JITTER}	Cycle-to-Cycle Jitter (RMS) (See Figure 2. F _{max} /JITTER)		0.2	< 1		0.2	< 1		0.2	< 1	ps
V _{PP}	Input Voltage Swing (Differential Configuration)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times (20% - 80%)	70	85	110	80	100	120	90	110	130	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{10.} Input and output parameters vary 1:1 with V_{CC}.

^{11.} All loading with 50 Ω to V_{CC} – 2.0 V.

^{12.} Not recommended for Single-Ended operation when using an EP16F to drive another EP16F. V_{OL} has reduced output swing and may not meet the V_{IL} specification over temperature.

^{13.} V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

^{14.} Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC}-2.0 V.

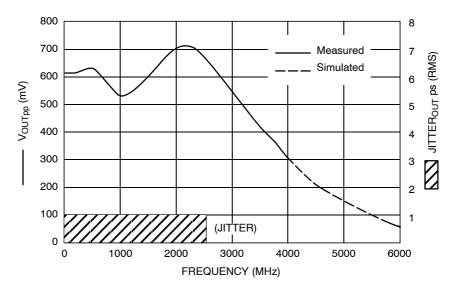


Figure 2. $F_{\text{max/JITTER}}$

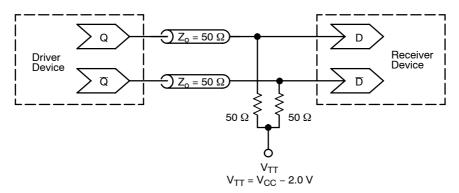


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC100EP16FD	SOIC-8	98 Units / Rail
MC100EP16FDG	SOIC-8 (Pb-Free)	98 Units / Rail
MC100EP16FDR2	SOIC-8	2500 / Tape & Reel
MC100EP16FDR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC100EP16FDT	TSSOP-8	100 Units / Rail
MC100EP16FDTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC100EP16FDTR2	TSSOP-8	2500 / Tape & Reel
MC100EP16FDTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC100EP16FMNR4	DFN8	1000 / Tape & Reel
MC100EP16FMNR4G	DFN8 (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

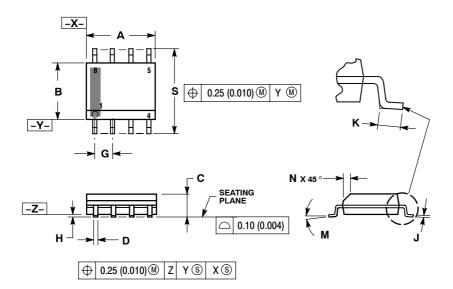
AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

AN1672/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes


AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

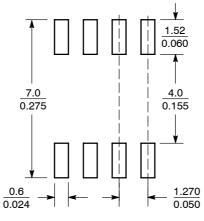
PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AH**

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

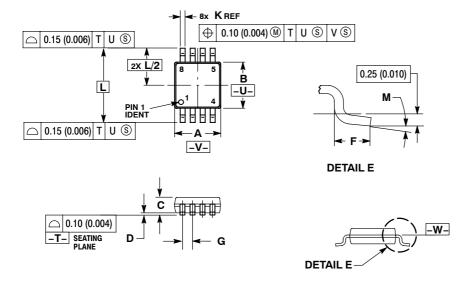

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 6. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*



 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 6:1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

NOTES:

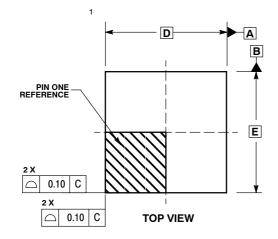
- NOTES:

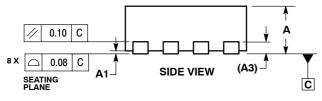
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

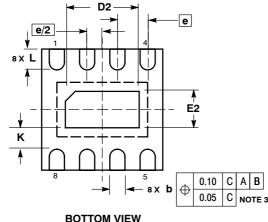
 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.


 5. TERMINIAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.


 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE —W.


	MILLIN	IETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	2.90	3.10	0.114	0.122			
В	2.90	3.10	0.114	0.122			
С	0.80	1.10	0.031	0.043			
D	0.05	0.15	0.002	0.006			
F	0.40	0.70	0.016	0.028			
G	0.65	BSC	0.026	BSC			
K	0.25	0.40	0.010	0.016			
٦	4.90	BSC	0.193	BSC			
M	0°	6 °	0°	6°			

PACKAGE DIMENSIONS

DFN8 CASE 506AA-01 ISSUE D

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED
- TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIN	MILLIMETERS					
DIM	MIN	MAX					
Α	0.80	1.00					
A1	0.00	0.05					
А3	0.20	REF					
b	0.20	0.30					
D	2.00	BSC					
D2	1.10	1.30					
E	2.00	BSC					
E2	0.70	0.90					
е	0.50	BSC					
K	0.20						
L	0.25	0.35					

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make triangles without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative